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Spontaneous brittle fracture is studied based on the
model of a body, recently introduced by two
of the authors, where only the prospective crack
path is specified as a discrete set of alternating
initially stretched and compressed bonds. In such
a structure, a bridged crack destroying initially
stretched bonds may propagate under a certain
level of the internal energy without external sources.
The general analytical solution with the crack
speed–energy relation is presented in terms of
the crack-related dynamic Green’s function. For
anisotropic chains and lattices considered earlier in
quasi-statics, the dynamic problems are examined
and discussed in detail. The crack speed is found to
grow unboundedly as the energy approaches its upper
limit. The steady-state sub- and supersonic regimes
found analytically are confirmed by numerical
simulations. In addition, irregular growth, clustering
and crack speed oscillation modes are detected at a
lower bound of the internal energy. It is observed, in
numerical simulations, that the spontaneous fracture
can occur in the form of a pure bridged, partially
bridged or fully open crack depending on the internal
energy level.

1. Introduction
We consider a spontaneous crack propagating in a
structural elastic body with periodically distributed,
self-equilibrated, microlevel stresses. No external forces

2014 The Author(s) Published by the Royal Society. All rights reserved.
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are assumed to be applied. The analysis is based on the model introduced in [1], where the static
states were examined. In the general formulation, an unspecified periodic structure is considered,
where only the prospective crack path is specified as a discrete set of alternating stretched
and compressed bonds. In particular, such an incompatible stress distribution may occur if the
bonds are of different initial lengths (figure 1a). The general analytical solution corresponds
to the bridged crack propagating with a constant speed and destroying the initially stretched
bonds. The solution is obtained in terms of the crack-related dynamic Green’s function for an
unspecified periodic structure. The selective discrete Fourier transform introduced in [1] is used
in a dynamical setting.

The solution represents the internal energy level as a uniquely defined function of the crack
speed. The inverse, multi-valued function usually is uniquely defined by the admissibility
condition [2], which states, in general, that a bond should not rise above the breaking point
before the moment assumed in the problem formulation. It follows that only the maximal speed
corresponding to the given energy is realized. However, if two or more close minima of the energy
exist corresponding to different values of the speed, then the latter can oscillate. The revealed
phenomenon of instability manifests itself in the case of a two-line chain considered below. In
this connection, note that there are some (numerical) examples where cracks have two bistable
regimes for the same energy release [3].

Along with the general structure, two specified structures, the mass-spring lattice and two-
line chain, are considered in detail. For these structures, quantitative results are obtained based
on the general solution and the specific Green’s functions. We also present results of the numerical
simulations of the corresponding transient problems. This allows us to determine the regions of
stability of the analytical solutions and to reveal unsteady regimes as well as partially bridged
and fully open crack propagation modes. For the structures under consideration, the analytical
results are specified for an arbitrary value of the parameter defining the structure’s anisotropy.
Note that the anisotropy plays a substantial role in this problem.

There are two bounds of the internal energy, and the spontaneous crack can exist in the energy
segment between them. It cannot propagate if the energy is below the lower bound, whereas the
intact structure cannot exist if the energy exceeds the upper bound. The corresponding speed–
energy relations are obtained analytically and plotted for the specified structures. The speed range
extends from a non-zero value and, in the considered model, has no upper bound. The speed
tends to infinity as the energy level approaches its upper bound. The numerical simulations show
that, at a high level of the internal energy, not only the stretched bonds, but also the initially
compressed ones will break. So, the spontaneous failure wave can propagate in the form of a
pure bridged, partially bridged or fully open crack depending on the internal energy level.

Note that, in some respects, the problem is related to that for the bridge crack [4,5], to the
weak-bond fracture of a lattice [6] and to the transition waves in bistable structures [7–10]. In a
sense, the spontaneous crack propagation considered below also relates to the so-called Prince
Rupert’s drop phenomenon of disintegration, first noted in the seventeenth century [?] and to the
fragmentation of metastable glass [12]. These phenomena can be referred to the internal potential
energy, which releases under a local breakage, resulting in the spontaneous disintegration.

The state of the considered structure is characterized by the following values. The first is the
initial internal energy, E , which arises owing to the difference in the interface bond lengths and
stored in the cell of periodicity, that is, in two spans of the structure. Next is the initial energy of the
bond, E, which is the same for all the bonds. These two values correspond to the initial state of the
intact structure. Finally, there is the actual energy of the bond, Em, where m is the bond number.
These energies refer to the microlevel scale.

The critical values of the initial internal energy and the bond energy are denoted by Ec and
Ec, respectively. The latter is the same for all of the bonds; it relates to the critical extension. Note
that E = Ec under E = Ec. The level of the internal energy is characterized by the ratio of the stored
internal energy to its critical value, γ = E/Ec = E/Ec.

In the formulation, the displacements about the initial positions of unstrained bond ends
are introduced in terms of the initial and actual states, Um and um = Um + Um(t), respectively,
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(a)
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Figure 1. (a,b) The bodywith the structured interface. The compressed and stretched bonds alternate creating self-equilibrated
stresses.

where m is the bond number. It is assumed that the bond stiffnesses are the same. In this case,
in the initial state

U2m = −U2m+1 = const, m = 0, ±1, . . . . (1.1)

In the analytical study, we consider the bridged crack as the breakage of initially stretched
bonds propagating in the steady-state mode. We use this term assuming that the dynamic state
is characterized by two functions of one argument, η = t − τm, but not on t and m separately (a
constant crack speed v = 1/τ ). Numerical simulations demonstrate that the steady-state solutions
found analytically really exist. In addition, the simulations reveal more complicated ordered
modes with crack speed oscillations, where periodic clusters consist of two or more initially
stretched bonds.

For the specified structures, we determine the lower values of γ = γc as a function of an
orthotropy parameter, α, as the lower bound of the domain where the bridge crack may propagate
spontaneously. As a manifestation of the dynamic amplification factor (see [13]), this bound
appears considerably below its static values found in [1]. Next, we determine the crack speed
as a function of γ , γc ≤ γ < 1. In the numerical simulations, it appears that the steady-state regime
is quickly established if parameter γ is not too close to γc. Otherwise, the crack speed is unstable
and can be very low. It becomes supersonic and grows unboundedly for γ → 1. Moreover, in this
case, not only can initially stretched bonds break as assumed in the analytical formulation, but
also the initially compressed bonds become broken, and an open propagating crack forms with a
finite bridged region.

2. Analytical study of a general problem

(a) Problem formulation
We consider two equal half-planes or layers of a non-specified periodic structure connected by a
set of elastic bonds (figure 1b). The bonds are numbered by m = 0, ±1, . . .. The between-the-bond
distance is taken as the length unit. The even and odd bonds differ only by their initial
length, namely the even bonds, m = 0, ±2, . . . , are of the length 2h, whereas the odd bonds,
m = ±1, ±3, . . . , are of a slightly different length, 2h + 2� with � > 0, �/h � 1. In the framework
of Hooke’s law, the bond’s stiffness, �, is assumed to be the same for both the even and the odd
bonds, and the response of the structure to external forces corresponds to the regular, periodic set
of the bonds. This also concerns the bulk of the body, where the internal energy may be present.

If the internal energy level is sufficient, then a spontaneous breakage of the even bonds can
propagate along the interface in the absence of external forces. We assume that the steady-state
regime can exist, where the dynamic displacements of the upper knots of the interface, additional
to those in the initial state, are described by two different functions of a single argument, one
function for the even bonds and the other for the odd ones

Um(t) = U(η) (m = 0, ±2, . . .), Um(t) = V(η) (m = ±1, ±3, . . .), η = t − τm. (2.1)

Note that, in this notation, the bridged crack speed is v = 1/τ .

 on May 2, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140121

...................................................

The structure’s dynamic properties are reflected by the Green’s function considered below.
The initial displacements of the upper knots of the interface are defined by the static solution
presented in [1]. The additional displacements satisfy the relations (2.1). No even bonds exist
at η > 0 (it is the bridged crack area), whereas the structure is intact at η ≤ 0. The conditions at
infinity correspond to the absence of external actions.

In analytical calculations, the crack speed, v, is defined by the internal energy, E . However, as
is common in such mixed boundary value problems, we solve analytically the inverse problem
considering v as an input parameter, which is far more convenient. Herewith, the graphs also
plotted for the inverse problem solution allow us to see the direct dependence, v(E).

Recall that the inverse, multi-valued function is usually uniquely defined by the admissibility
condition. Namely the bond strain energy before the fracture point must be below the critical
value. It follows from this that, among the speeds which are found to correspond to a given level
of the internal energy, only the maximal speed is acceptable [2] and that the results for γ (v) > 1
are not acceptable. In addition, the results obtained under this formulation are valid if the odd-
number bond dynamic states remain subcritical. Note that the numerical simulations discussed
in §5 confirm the analytical results for the whole range of γ . Interestingly, in the case where γ is
close to one, the odd bonds also become broken, but this does not influence the crack speed.

Mathematically, we consider the intact structure under self-equilibrated external forces, Q(η),
acting in the opposite directions on the upper and lower ends of the even bonds. These forces,
which are unknown in advance, serve to compensate the tensile forces in the even bonds at η > 0

Q(η) = Q0(η) = 2�u0(η) = 2�[U0 + U(η)] (m = 0, ±2, . . .), (2.2)

where � is the bond stiffness. The task is to determine the dynamic displacements, whereas the
initial displacements found in [1] are

U0 = −U1 = �L(0), (2.3)

where L(k) is the kernel of the static version of the Wiener–Hopf equation. Note that L(0) takes the
same value in both the dynamic and static formulations.

(b) Dynamic Green’s functions
In the analysis, we consider the dynamic crack-related Green’s function, G(m, t), corresponding
to the intact structure under unit self-equilibrated pulses acting at t = 0 in opposite directions on
the upper and lower ends of the bond m = 0. It then follows that the dynamic displacements, U(η)
and V(η), are

U(η) =
∑

m′=0,±2,...

G(m − m′, t) ∗ Q0(t − τm′) (m = 0, ±2, . . .)

and V(η) =
∑

m′=0,±2,...

G(m − m′, t) ∗ Q0(t − τm′) (m = ±1, ±3, . . .),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)

where the asterisk means the convolution on t.
Below the Fourier transform on t and the discrete Fourier transform on m are denoted by the

superscript F, whereas the continuous Fourier transform on η is denoted by the superscript Fη.
The latter leads to the following relations

UFη (k) =
∫∞

−∞
U(η) eikη dη = QFη

0 (k)
∑

m′=0,±2,...

GF(m − m′, k) e−ikτ (m−m′)

and VFη (k) =
∫∞

−∞
V(η) eikη dη = QFη

0 (k)
∑

m′=0,±2,...

GF(m − m′, k) e−ikτ (m−m′)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

with

QFη

0 (k) =
∫∞

0
Q0(t) eikη dη. (2.6)
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Thus,

UFη (k) = QFη

0 (k)Geven(k), VFη (k) = QFη

0 (k)Godd(k). (2.7)

The functions Geven(k) and Godd(k) are the double Fourier transforms, the continuous transform
on t with the parameter k and the selective discrete transforms on m (on even m and on odd m
separately) with the parameter −τk

Geven(k) = GFF
even(−τk, k) =

∑
m=0,±2,...

∫∞

−∞
G(m, t) eikt−iτkm dt

and Godd(k) = GFF
odd(−τk, k) =

∑
m=±1,±3,...

∫∞

−∞
G(m, t) eikt−iτkm dt.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

The selective transforms introduced in [1] can be expressed in terms of the regular discrete
transform as follows:

Geven(k) = GFF
even(−τk, k) = 1

2

[
GFF(−τk, k) + GFF(−τk + π , k)

]

and Godd(k) = GFF
odd(−τk, k) = 1

2

[
GFF(−τk, k) − GFF(−τk + π , k)

]
,

⎫⎪⎪⎬
⎪⎪⎭ (2.9)

with

GFF(−τk, k) =
∑

m=0,±1,...

∫∞

−∞
G(m, t) eikt−iτkm dt. (2.10)

(c) The spontaneous bridge crack propagation
Let the breakage of the even bonds propagate with constant speed, v = 1/τ > 0, and let the
damaged area be for η = t − mτ > 0, whereas the intact bond area is for η ≤ 0. We can consider
this structure as completely intact, but under the external forces, Q0(η), which compensate for the
actions of the even bonds at η > 0. These forces are defined in (2.2). The Fourier transform leads to

QFη

0 (k) = 2�u+(k) = 2�

(
U+(k) + U0

(0 − ik)

)

and UFη (k) = U+(k) + U−(k), U±(k) =
∫∞

−∞
U(η) eikηH(±η) dη.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

Recall that U0 = −U1 are the initial displacements (2.3) caused by the microlevel stresses.
Now the governing equations follow from (2.7) as

UFη (k) = 2�Geven(k)
(

U+(k) + U0

(0 − ik)

)

and VFη (k) = 2�Godd(k)
(

U+(k) + U0

(0 − ik)

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

The first of the equations in (2.12) is independent of the second. It is the Wiener–Hopf-type
equation with respect to the dynamic displacements of the even bonds

U−(k) + L(k)U+(k) = [1 − L(k)]
U0

(0 − ik)
, L(k) = 1 − 2�GF

even(k), (2.13)

where Geven(k) is expressed through the original Green’s function GFF(−τk, k) in (2.9).
We assume that the function L(k) satisfies the conditions which allow us to solve this

equation in a regular way (in this connection, see [8, pp. 449–451]). To proceed, the factorization
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should be made as

L(k) = lim
�k→0

L+(k)L−(k), L±(k) = exp
[
± 1

2π i

∫∞

−∞
ln L(ξ )
ξ − k

dξ

]
(±�k > 0). (2.14)

In particular, it follows from this that

L±(±i∞) = 1, L±(0) =
√

L(0)R±1, R= exp
[

1
π

∫∞

0

ArgL(ξ )
ξ

dξ

]
. (2.15)

Next, we represent equation (2.13) in a form where the plus/minus functions are separated

U−(k)
L−(k)

+ L+(k)U+(k) = U0

0 − ik

[
1

L−(k)
− L+(k)

]
= C+(k) + C−(k)

and C+(k) = U0

0 − ik

[
1

L−(0)
− L+(k)

]
, C−(k) = U0

0 − ik

[
1

L−(k)
− 1

L−(0)

]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.16)

In the considered case, it follows that

U+(k) = U0

0 − ik

[
1

L−(0)L+(k)
− 1

]
, U−(k) = U0

0 − ik

[
1 − L−(k)

L−(0)

]
(2.17)

and

U(0) = lim
k→−i∞

ikU−(k) = lim
k→i∞

(−ik)U+(k) = U0

(
1

L−(0)
− 1

)

and u0(0) = U0

L−(0)
= U0R√

L(0)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.18)

To calculate this value for a specific structure the integral transform of the original Green’s
function, GFF(−τk, k), should be specified. As for V(η), its transform, VF(k), is defined by the last
relation in (2.12), where U+(k) is now known (2.17).

(d) Energy relations
The critical strain energy, Ec, is crack-speed independent

Ec = 2�u2
c , (2.19)

where uc is the critical displacement. The internal energy density per two span, E , is (see [1])

E = 2��2L(0). (2.20)

We introduce the ratio

γ = E
Ec

= U2
0

u2
c

, (2.21)

where Ec is the critical internal energy: E = Ec as E = Ec in the initial state. At the moment of the
bond breakage, the total displacement U0 + U(0) = uc, and it follows from (2.18) that

γ = L2
−(0) = L(0)R−2. (2.22)

Note that the right-hand side of (2.22) is a function of the crack speed. So this relation serves
for the determination of the crack speed as a function of γ . Recall that (2.22) may be satisfied
by a number of values of v. Usually [2], only the maximal value of the speed is considered to
be admissible, because it corresponds to the first moment when the bond state becomes critical.
There are some exceptions, however, as we show below.

The fracture energy itself is found based on (2.18), (2.20) and (2.3). It is

Ef = 2�(U0 + U(0))2 = 2�U2
0 L−2

− (0)R2 = 2��2L(0)R2. (2.23)

Thus, the ratio of the fracture energy to the internal energy, E , is

Rf = Ef

E =R2 = exp
[

2
π

∫∞

0

ArgL(ξ )
ξ

dξ

]
= L(0)

γ
. (2.24)
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Figure 2. The orthotropic lattice. The stiffness of the horizontal and vertical bonds isμ and� , respectively (α = �/μ). The
bonds on the crack line are prestressed as defined earlier.

3. Two specific structures
Here, we consider the same specific structures as in [1]: the two-line chain and the orthotropic
square lattice, but we take into account point masses placed at the knots (figure 2).
The spontaneous failure waves in these structures demonstrate a non-trivial dependence on the
internal energy level and the anisotropy parameter. Below, we illustrate and discuss this in detail.

(a) The two-line chain
The dynamics of the chain shown in figure 3 is governed by the equation

Müm(t) + 2(� + μ)um(t) − μ(um+1(t) + um−1(t)) = ±Q(m, t), (3.1)

where signs ± correspond for the upper and lower line, respectively. From this, the Green’s
function G(m, t) is defined as the displacements corresponding to Q(m, t) = δ(t)δm,0. We find

GFF(−τk, k) =
(

1
μ

) [(
0 − ik

c

)2
+ 2(α + 1 − cos τk)

]−1

, c =
√

μ

M
. (3.2)

It follows that

Geven = 1
μ

(0 − ik/c)2 + 2(α + 1)
[(0 − ik/c)2 + 2(α + 1)]2 − 4 cos2 τk

,

Godd = 1
μ

2 cos τk
[(0 − ik/c)2 + 2(α + 1)]2 − 4 cos2 τk

,

L1(k) =
(

0 − ik
c

)4
+ 2(α + 2)

(
0 − ik

c

)2
+ 4α + 4 sin2 τk,

L2(k) =
(

0 − ik
c

)4
+ 4(α + 1)

(
0 − ik

c

)2
+ 4α(2 + α) + 4 sin2 τk

and L(k) = L1(k)
L2(k)

, L(0) = 1(2 + α).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

Note that the dimension of τ , 1/k, 1/c is time. Along with this, because the distance between
the bonds is taken as the length unit, c is the long wave speed. It can be seen below that the
spontaneous failure wave can propagate with hypersonic speeds, v = 1/τ 	 c.
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κ m M

m = –4  –3  –2  –1 0 1 2 3 4 5 6 m = –6 –5  –4  –3 –2 –1 0 1 2 3 4

(a) (b)

Figure 3. (a) The intact chain and (b) the chain with a semi-infinite bridged crack.

(i) Some limiting relations

We now derive some limiting relations that give us reference points for the dependencies
presented below. Let us represent expressions corresponding to zero points of L1,2(k) in the form

k2
1,2

c2 = α + 2 ∓
√

α2 + 4 cos2 τk1,2 (L1(k1,2) = 0)

and
k2

3,4

c2 = 2(α + 1) ∓ 2| cos τk3,4| (L2(k3,4) = 0).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

Note that these points correspond to waves radiated during the bridge crack propagation.
Namely the numbers, ki, i = 1, . . . , 4, are the wave frequencies and τki are the wavenumbers.

Based on (3.3) and (3.4), we can find limiting relations corresponding to α = 0, α = ∞ and
v = 1/τ = ∞. In the case, α = 0

L1(k) = L2(k), ArgL(k) = 0, R= 1, L(0) = 1
2 , (3.5)

and it follows from (2.22) that γ takes the static value, γ = 1
2 .

The same conclusion is valid for the opposite case, α → ∞, and also for v → ∞ (τ → 0). We
have

k1,2

c
= √

α + 2 ∓ α + o(1),
k3,4

c
=

√
2α ∓ ε1,2, ε1,2 = o(1) (α → ∞)

and
k1,2

c
=

√
α + 2 ∓

√
α2 + 4,

k3,4

c
=

√
2(α + 1) ∓ 2 (v = ∞).

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

In the considered cases, ArgL(k) is a piecewise constant function

ArgL(k) = −π [H(k − k1) + H(k − k2) − H(k − k3) − H(k − k4)], (3.7)

and

R= k1k2

(k3k4)
. (3.8)

It follows that for any v

R∼ 1√
α

, γ ∼ 1
(αR2)

→ 1 (α → ∞) (3.9)

and for any α

R= 1√
α + 2

, γ = 1
((α + 2)R2)

= 1 (v = ∞). (3.10)

Graphical illustrations of analytical results obtained for the chain are presented in §4 together
with the results of numerical simulations.
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Figure 4. (a–c) The spontaneous bridge crack in the lattice. The evolution of the γ − v/c dependence when changing the
anisotropy parameter α. Recall that γ = E/Ec is the ratio of the internal energy to its critical value. The blurred minimum,
where an unsteady crack speed regime can be expected, and a jump-like dependence corresponding to smallα. The minimum
becomes more localized asα grows.

(b) The square-cell lattice
From the equation for the lattice dynamics under unit self-equilibrated pulses

Müm,n(t) + 2(� + μ)um,n(t) − μ(um+1,n(t) + um−1,n(t))

− �(um,n+1(t) + um,n−1(t)) = δ(t)δm,0[δn,0 − δn,−1] (3.11)

we find the double Fourier transform of the crack-related dynamic Green’s function

GFF(−τk, k) = 1
2�

⎛
⎝1 −

√
Y + 4 sin2 τk/2

Y + 4 sin2 τk/2 + 4α

⎞
⎠ ,

L(k) = 1
2

⎛
⎝

√
Y + 4 sin2 τk/2

Y + 4 sin2 τk/2 + 4α
+

√
Y + 4 cos2 τk/2

Y + 4 cos2 τk/2 + 4α

⎞
⎠

and L(0) = 1

(2
√

α + 1)
, Y =

(
0 − ik

c

)2
, c =

√
μ

M
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

Note that such a lattice in the absence of the internal energy was considered in [14] without
evaluation of the Green’s function (also see [15]).

The limiting relations following from (2.22) and (3.12) are

γ
(v

c
, α

)
→ 1

2
(α → 0), γ

(v

c
, α

)
→ γ∞

(v

c

)
= 1

2
exp

[
− 2

π

∫ 2

0

ArgL∗(k)
k

dk

]
(α → ∞), (3.13)

where

L∗(k) =
√

(0 − ik)2 + 2(1 − cos τck) +
√

(0 − ik)2 + 2(1 + cos τck). (3.14)

It is found from this that in the limit, α → ∞, the minimal value of γ and the corresponding speed
are γ ≈ 0.66656, v/c ≈ 0.709 (figure 6a, where γmin(α) is plotted).

(i) Graphical illustrations of the analytical results for the lattice

Here, we present the energy–speed relation plotted for some values of α in figures 4 and 5 in
the form of the dependence of the normalized internal energy, γ = E/Ec, on the normalized crack
speed, v/c.

It can be seen that the minimal admissible speed is about a half of the long wave speed, c. So,
there is no slow crack in this case. This is the same as for the open crack in the isotropic lattice
under remote forces [16,17]. However, in contrast to the latter case, the crack in the lattice with
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Figure 5. (a–c) The spontaneous bridge crack in the lattice. The evolution of the γ − v/c dependence with the anisotropy
parameter α. In these plots, one can see how the minimum bifurcates and changes location with a relatively small change of
the anisotropy parameterα. The presence of two concurrent minima (α = 3.215) may lead to crack speed oscillations about a
stable averaged value.
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Figure 6. The spontaneous bridge crack in the lattice: the dynamic, γc, and static, γst, values of the minimal γ , which is
sufficient for the spontaneous crack to exist, as a function of the normalized anisotropy parameter, α̂ = (1 − α)/(1 + α)
(a,b), and the corresponding crack speed (c). The small circles correspond to the limiting values found in §3b. (Online version in
colour.)

internal energy can propagate at any high speed, the long wave speed is no longer the crack
speed limit. Indeed, the crack gets its energy from the source distributed over its path, not from
any forces acting at a distance.

In figures 4 and 5, a non-trivial role of the anisotropy can be seen: the blurred minimum, where
an unsteady crack speed regime can be expected, a jump-like dependence corresponding to small
α and the localization of the minimum with growing α (figure 4). In the range 3 ≤ α ≤ 3.5, the
minimum bifurcates and changes location, and we have two equal minima at α = 3.215 (figure 5).
Uncertainty of the crack speed arises in this case. As discussed in §4, such a configuration results
in crack speed oscillations between these minima. This phenomenon resembles the clustering
revealed earlier (see [5,18]).

The minimal γ as a function of the normalized anisotropy parameter, α̂ = (1 − α)/(1 + α), the
dynamic and static values, and the corresponding crack speed are presented in figure 6. Note that
the minimal values of the internal energy required for the spontaneous crack growth initiation
(in the static formulation) and propagation (the dynamic formulation) differ greatly. The decrease
of the latter in comparison with the former arises owing to the dynamic factor [13]. It is remarkable
that there exists a jump in the dependence of the corresponding speed on α̂ at α̂ = 0.5 (figure 6c).

4. The two-line chain: analytical and numerical results
The main objectives of this paper are to determine the critical internal energy level under which
the spontaneous separation wave can exist and to find the energy-dependent crack speed. At the
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Figure 7. (a–c) The spontaneous semi-infinite bridged crack in the two-line chain. The relation between the normalized crack
speed, v/c, and the internal energy level,γ = E/Ec (the solid curves), found analytically based on (2.22) forα = 0.2, 0.5, 1.
The small open circles situated on the vertical axis correspond to the static state with the semi-infinite bridge crack. The other
small open circles on the graphs correspond to the steady-state regimes found by numerical simulations of the corresponding
transient problems. The larger solid circle corresponds to the upper bound of the domain of the pure bridged crack. The larger
open circle corresponds to the lower bound of the domain of the established partially bridged crack regime, where the length of
the bridge zone depends on the level of the internal energy, γ , and the anisotropy parameter,α. These two circles bound the
intermediate regime,where the rate of the initially stretched bonds is uniform,whereas the breakage of the initially compressed
bonds are chaotic. (Online version in colour.)
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Figure 8. (a–c) Theγ − v/c dependencies as in figure 7 forα = 5.5, 9.6, 20. Here, low crack speed regimes with clustering
are marked, where there exist crack speed oscillations within the cluster. (Online version in colour.)

same time, in the course of the analysis, we met some unexpected phenomena, such as crack speed
oscillations at low internal energy, energy-dependent finite bridge zones at a high energy level,
discontinuity in the speed-energy dependence and a notable role of the structure anisotropy. We
discuss all this by using the example of the two-line chain.

Note that, in the representation of the numerical results, v is the current speed as before. Recall
that for the fully bridged crack it is defined as 2/t2, where t2 is the time between the breakage of
two neighbouring initially stretched bonds. The current speed corresponding to the other bond
breakage, if it exists, is calculated similarly. In addition, in more complicated cases, the speed
averaged over the total time is introduced as 〈v〉 = l(t)/t, where l(t) is the dynamic crack length,
the fully/partially bridged crack length or the open crack length, respectively.

The γ − v/c relations for some values of α are presented in figures 7–9a. In these figures, (a) the
results where γ > 1 are not admissible, (b) the solid lines are plotted based on the analytical result
(2.22), (c) the small circles situated on the vertical axis correspond to the static state with the
semi-infinite bridge crack. In addition, the results of numerical simulations of the corresponding
transient problem are reflected by the circles on the graphs.

Three different regimes were detected. The first is the stable steady-state bridge crack growth
as predicted analytically. The upper bound of the corresponding speeds is marked by a larger

 on May 2, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140121

...................................................

−1.0 −0.5 0 0.5 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

−1.0 −0.5 0 0.5 1.0
0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.6811

−1.0 −0.5 0 0.5 1.0
0.5

1.0

1.5

γst

γc

γc / γst

vc /c
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Figure 9. The spontaneous semi-infinite bridged crack in the two-line chain. The comparative plots of the critical values of
γc(α̂) (theminimal valuesofγ underwhich the steady-state regimeof the spontaneous crackgrowthexists), the corresponding
quasi-static dependence, γst (a,b), and the crack speed, v(α̂)/c, corresponding to γ = γc. (c) Recall that γc corresponds to
the minimum γ on the smooth parts of the plots in figure 7. The manifestation of the dynamic amplification factor (see [13]),
which leads to the considerable decrease of the minimal γ in dynamics, can be clearly seen. (Online version in colour.)

bold circle. Next, there is a higher speed region, where the crack growth is accompanied by an
irregular breakage of the initially compressed bonds; it is bounded by the larger open circle.
Finally, at the right of the latter there exists the high-speed region, corresponding to the stable
steady-state crack growth. In this region, however, only a finite bridge zone remains adjacent to
the crack front, whereas the fully open crack front propagates with the same speed at a distance.
Thus, the spontaneous crack growth regime changes as the internal energy approaches the critical
value (that results in unlimited crack speed growth); however, the analytically and numerically
obtained crack speeds remain equal for any energy level, for any crack speed. Below, we discuss
the findings of numerical simulations in more detail.

The lower bound of γ -region, γc < γ < 1, where the spontaneous crack can propagate, as a
function of the anisotropy parameter, α̂, versus the corresponding crack-initiation dependence,
γst, obtained in [1], is presented in figure 9a,b. The crack-speed dependence corresponding to
γ = γc is shown in figure 9c.

5. The numerical simulations

(a) The basic aspects
The numerical simulations were conducted with the aim of determining the domains of validity
of the analytical solutions, and to reveal possible phenomena which could not be observed in the
framework of the above analytical studies. Two different cases were investigated numerically.

— Case ‘A’ corresponds to an ‘infinite’ chain, the ends of which are far enough from the crack
not to reveal themselves in the crack region during the calculations. Initially, the structure
is separated into two parts, the intact chain (at the right) and the chain without even
bonds (at the left). The spontaneous crack propagation is initiated by removing the first
even bond. This structure is assumed to reflect the steady-state regime, or at least to
approach it with a good accuracy in a reasonable time.

— Case ‘B’ represents a ‘semi-infinite’ waveguide, where the left part is absent. We use this
structure to see what happens if the fracture starts from the left end of the waveguide or
inside the ‘infinite’ structure propagating in both directions. In this case, the wave emitted
by the crack completely reflects and, under some conditions, the reflected wave can
propagate faster than the crack and can influence its speed.

Note that the emitted wave with the left-directed group velocity has the phase speed equal
to the crack speed. At the same time, the reflected wave directed to the right differs by the
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wavenumber and, therefore, interacts with the propagating crack with a non-zero frequency.
Thus, it could perturb the steady crack growth.

In spite of the presence of the left part of the chain, some reflection also occurs in the case ‘A’.
This is because the left part is not initially synchronized with the steady-state motion. Clearly, this
is not a total reflection. Thus, cases ‘A’ and ‘B’ are different, which allows us to trace the role of
the left-hand end condition in more detail.

As can be seen below, a wider spectrum of fracture modes corresponds to case ‘B’, whereas
the stable steady-state modes appear identical for both cases. With this in mind, we mainly
consider case ‘B’, and it assumed everywhere, unless case ‘A’ is noted. The latter differs mainly
by the absence of some subcritical disordered regimes. Note that such regimes are not observed
in the case of large values of α.

To elucidate the peculiarities of the wave reflection, consider dispersion relations for the case
‘A’

ω1,2 = c
√

2 + α ±
√

α2 + 4 cos2 k (for the left part)

and ω3 = c

√
2α + 4 sin2

(
k
2

)
(for the right part).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.1)

The dispersion curves for α = 0.5 and α = 1 are presented in figure 10. First, we note that, to reach
the crack front, the reflected wave group velocity must be greater than the crack speed

vg = dω2

dk
> v = ω

π − k
. (5.2)

Based on the dependence of the crack speed under minimal internal energy, figure 9c, we found
that this inequality is not valid for any α > 1.2. Thus, the conditions at the left end could matter
only in the case α < 1.2.

An explicit finite-difference algorithm is used for the calculation of a respective system of
ordinary differential equations governing the motion of chain masses. The required accuracy is
achieved and verified. Both even (initially stretched) and odd (initially compressed) bonds are
subjected to the limiting elongation condition. Simulations of the transient problem have been
conducted for several values of the anisotropy parameter α, whose role appeared crucial in some
respects. The lattice spacing and the long wave speed are taken as the length and speed units.
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Figure 11. Results of the numerical simulations. The spontaneous bridge crack forα = 0.5. The plots for the current length of
the pure bridged crack, m(t) (a), and some of the corresponding average speeds (b). The lack-of-energy transient regimes for
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(b) Anisotropic chain corresponding toα = 0.5
The plots for the current length of the fully bridged crack as a function of time, m(t)-plots, and
some of the corresponding average speeds are presented in figure 11 for a number of internal
energy levels. The steady-state regime exists for any value of γ ≥ 0.516, whereas the breakage
in the range 0.49 ≤ γ ≤ 0.515 continues but is not established. Note that the analytical minimum
is 0.5150 (figure 7b). The plots show that the steady-state regime is established more rapidly as
the internal energy increases. The current speed distributions are shown in figure 12. The high-
amplitude crack speed oscillations about the averaged speed are seen to exist at the minimal
energy level, and quickly vanishes as the energy increases. Distribution of the instantaneous
speeds has similar profiles for all values of γ < 0.5150 and is not presented here.

The comparative results for the case ‘A’ are presented in figure 13. It can be seen that the
stable regimes are the same. The only difference concerns the low-speed-disordered regimes
corresponding to γ < 0.5160. Comparing figures 11 and 13, we conclude that the range of
the subcritical energy modes essentially decreased for the case ‘A’ (the open waveguide), as
we have expected above. The special case, γ = 0.5150, which coincides with the analytically
predicted lower bound of the energy, remains the same in both cases. Some new subcritical
modes appear between the stable regime γ = 0.5160 and the lower bound regime. The instability
of the steady-state mode at the minimal bound of the energy occurs owing to a weak certainty of
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Figure 13. Case ‘A’: results of the numerical simulations. The spontaneous bridge crack for α = 0.5. The plots for the current
length of the pure bridged crack, m(t), (a) and some of the corresponding average speeds (b). The established steady-state
modes appear for γ ≥ 0.516 and completely coincide with case ‘B’ (figure 11). (Online version in colour.)

the minimum. For larger values of α where the minimum is more pronounced, the lower bound
mode is stable.

In connection with the discussed topic, we note that the internal energy stored in the chain is
at least twice as much as the bound strain energy. When the crack propagates, the energy excess
outflows from the crack front with the emitted wave. If the wave meets an obstacle (such as in case
‘B’), then the reflective wave arise which may provide additional energy to the fracture. However,
in the subcritical regimes, this energy is still not sufficient for the steady-state mode to exist. As
the result, the disordered crack spreading occurs in a range at γ < 0.5160 as discussed above. This
is why this range is much smaller for the open waveguide in comparison with that in case ‘B’.

Note that the profiles of the instantaneous speeds in the energy range 0.5150 < γ < 0.5160 are
still the same as shown in figure 12a; however, the lower cloud becomes less dense with increasing
γ and disappears at γ = 0.5160, where a ‘fish-like’ structure occurs (compare with figure 12b). As
γ increases further, the dispersion in the speed distribution decreases to zero.

(c) Isotropic chain (α = 1)
The plots of the crack tip position as a function of time and some of the corresponding average
speeds are presented in figures 14 and 15 (compare with figures 11 and 12 related to α = 0.5).
The extremely sharp interface can be observed between the steady-state and transient regimes
at the energy minimum. It is seen how dramatically the speeds, both the averaged and current
speeds, change under a barely notable increase in the energy level from γ = 0.542630 to 0.542631.
With this tiny step, the crack propagation mode is transformed from almost chaotic to steady-
state. Note that the analytical minimum (figure 7c) is 0.5426. Again, when the open waveguide
(case ‘A’) is considered, the subcritical energy range becomes far more narrow, whereas for the
values γ > 0.5426, no difference with that in the case ‘B’ is observed.

As the energy approaches the upper critical value, the compressed bonds begin to break at an
energy-dependent distance behind the crack front. This is shown in figure 16. In the numerically
examined transient problem, the odd-bond breakage begins at a distance from the starting point
of the dynamic crack. The latter distance as well as the former vanishes as the energy approaches
the upper critical bound.

In a general case of the steady-state regime, the length of the bridge crack zone is energy-
independent, and its rear bound propagates with the same constant speed as the crack front. As
can be seen in figure 16c, there is a forward–backward splitting, the bonds break in the order
2m → 2m − 3 → 2m + 2 → 2m − 1 → . . ..
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In figure 17a,b, the profiles of the fracture are shown for two different values of the internal
energy, γ = 0.6 and γ = 0.948 which correspond to the bridge crack and the open crack regimes,
respectively.

(d) Anisotropic chain corresponding toα = 9.6
Such a stiff-transverse-bond structure presents us with some notable effects: (i) there exist here
stable steady-state regimes corresponding to the oscillating part of the γ − v/c diagram below
the smooth minimum of the internal energy (compare figures 18 and 8b). (ii) In some of the
energy ranges, the speed is energy-independent (see two upper lines in figure 18a). This is
because the regime corresponds to very narrow kinks in the γ − v/c diagram as can be seen in
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Figure 16. Results of the numerical simulations. The propagation of a partially bridged crack. The modes are presented where
the initially compressed bonds break at an energy-dependent distance behind the crack front. In the numerically examined
transient problem, the odd-bond breakage begins at a distance from the starting point of the dynamic crack. The latter distance
as well as the former vanishes as the energy approaches the upper critical bound. In a general case of the steady-state regime,
the lengthof thebridge crack zone is invariable. As canbe seen inplot (c), there is a forward–backward splitting, thebondsbreak
in the order 2m→ 2m − 3→ 2m + 2→ 2m − 1→ . . .. (a) γ = 0.946 (b) γ = 0.947 (c) γ = 0.948 (d) γ = 0.990
(e) γ = 0.999.
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t = 59.7
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Figure 17. Profiles of the chain at themoments immediately before the breakage of the selected links. Panels (a,b) correspond
to the energy levelsγ = 0.6 andγ = 0.948, respectively. Linksm= 50, 54 and 58 are destroyed at times t = 59.7, 64.5 and
69.3, respectively, when γ = 0.6, whereas for the energy level γ = 0.948, the numbers arem= 16, 22 and 28 for t = 11.5,
15.52 and 20.08. Note that in the latter case, bonds m≤ 11 remains intact for the whole process. Horizontal lines show the
position of the masses along the bridged crack part of the structure at the static condition. The blue dashed line at the left
corresponds to the steady-state crack movement with the constant speed, v = 0.836. In figure 17b, the crack moves with the
supersonic speed, v = 1.399. (Online version in colour.)

figure 8b. (iii) The three-even-bond clustering arises at γ = 0.900. The current speeds in the cluster
correspond to the minima shown in figure 8b for the latter level of the energy. The average and
current speeds corresponding to the plots in figure 18a are shown in figure 18b,c, respectively.

(e) Main results of the numerical simulations
We now list the main findings of the numerical simulations.

— The relations between the crack speed and the internal energy, γ − v/c diagrams,
obtained analytically for the steady-state regimes and numerically for established crack
propagation in the corresponding transient problems, fully coincide.
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Figure 18. Results of the numerical simulations. The spontaneous bridge crack for α = 9.6. The plots for the current length
of the fully bridged crack, m(t) (a), and some of the corresponding average (b) and current (c) speeds. The three-even-bond
clustering can be observed at γ = 0.900. The current speeds in the cluster correspond to the minima shown in figure 8b for
the latter level of the energy. (Online version in colour.)

— The transition from disordered regimes to the established ones occurs on a very narrow
interval. Stable steady-state regimes start from a value of γ exceeding the analytically
obtained minimum by 1/500 (α = 0.5) and 1/500 000 (α = 1).

— In special cases, where the crack speed appears to be non-uniquely defined, as shown in
figure 8, it may oscillate between the separate minima found analytically. In the case of
such clustering, the instantaneous crack speeds observed within the cluster coincide with
the corresponding values predicted analytically.

— For large values of the anisotropy parameter α, the γ − v/c diagram oscillates intensively
at low crack speeds. As the result, the global minimum of γ appears below that defined
for the smooth part of the diagram. The numerical simulations show that, in such cases,
there exist stable propagation regimes corresponding to the sharp global minimum.

— The spontaneous crack can spread under a subcritical energy level, when it is somewhat
below the analytically found minimum. The width of the corresponding subcritical
γ -region depends on the condition at the left. Remaining narrow, it reaches its maximum
in the case with the total reflection.

— The regions of the internal energy corresponding to different crack speed regimes depend
essentially on anisotropy parameter α.

— At high levels of the internal energy, the pure bridged crack mode changes to the
partially bridged one, where only a finite bridge zone remains adjusted to the crack front
(figure 19). The length of the bridge–crack zone decreases to zero as γ increases. There
also exists an intermediate region, where the bridged crack growth is accompanied by
irregular breakage of the initially compressed bonds. The breakage of the compressed
bonds, however, does not influence the crack speed, because it is supersonic in these
cases. Although no energy flux is required, to overcome the energy barrier in the bond
breakage, a transfer of energy from one bond to another is needed. In the supersonic
regime, such a transfer is possible because the between-the-bond links are massless.
Nevertheless, any event, taking place at a distance several spans behind the supersonic
crack front, cannot affect the crack speed. So, when the odd bonds break at a distance, the
even-bond breakage must propagate as predicted by the steady-state analytical solution
obtained for the bridged crack, and this is confirmed by the numerical simulations.

Note that the possibility of supersonic crack propagation in massless-bond discrete lattices
was first shown analytically in [17]. Then, in the application to fracture and phase transition, this
phenomenon is discussed in more detail in [8, sections 11–13], where the steady-state formulation
is used. Analytical considerations and results of multiple numerical simulations of the respective
transient regimes are presented in [19] for the square and triangular lattices, and in [20] for some
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open crack front bridge crack front

the bridged crack zone

Figure 19. The chain structure in the steady-state open crack regime, where two fronts, the bridged crack front and the open
crack front behind it, move with the same speed.

triangular lattice strips. In these publications, in contrast to the present paper, the energy on the
crack path appeared owing to lattice oscillations or a static prestress by an external load applied
over the body.

6. Conclusion
The problem of spontaneous crack propagation under the internal energy is formulated and
solved. Analytical solutions are obtained for a general periodic structure, where only the crack–
path interface is specified. The results for the general structure are presented in terms of a
non-specified dynamic Green’s function. The results for an anisotropic lattice and a chain are
presented explicitly and discussed in detail. The analytical solutions are derived using the
selective discrete transform introduced in [1].

The lower bound of the internal energy and the crack-speed–energy relations are determined.
For the lattice and chain, the results are presented as functions of an anisotropy parameter.
The solutions evidence that the crack can propagate at subsonic as well as supersonic speeds. The
latter grows unboundedly as the energy level approaches the upper limit.

In some cases, the steady-state analytical solutions suggest crack-speed instabilities. This can
occur when the solution does not define the crack speed uniquely. The numerical simulations
confirm that crack speed oscillations really occur under such conditions.

Numerical simulations of the corresponding transient problem for the chain demonstrate
the stability and validity of the steady-state analytical solutions. In addition, in the numerical
simulations, other regimes are observed, such as (i) a disordered slow crack spreading in a very
narrow subcritical range of the internal energy, (ii) clustering with crack speed oscillations, also
at the lower boundary of the energy and (iii) breakage of the initially compressed bonds under
a high level of the energy. The latter phenomenon does not affect the crack speed because, in
this case, it is supersonic. The transition from the disordered regimes to the established ones
occurs on a very narrow interval. Stable steady-state regimes start from a value of γ exceeding
the analytically obtained minimum by 1/500 (α = 0.5) and 1/500 000 (α = 1).

Finally, we note that along with the spontaneous crack propagation, the crack dynamics under
the combined action of external forces and the internal energy is of interest. We consider the latter
problem separately.
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